
Rev. 20181113.131418 Lab 19b1. L3 Switch SVIs
ccnacookbook .com

G O A L

Configure and verify layer 3 routing between s on S1.
Topology

For simplicity, you can reuse the physical topology of
the previous lab, 19a, and shutdown the port on S1
that leads to the router. You'll be handling that
routing within S1. If you're starting from scratch,
R1 doesn't even need to exist, and you'll need:
• A switch (S1) of almost any vintage that can

handle L switching. A 2960 is a fairly normal
L switch that can have L routing enabled. I'm
using a 3550 layer-3 switch because it's cheap

• Two hosts (H1 & H2) to test connectivity. I'm
actually using a couple of old Cisco routers
with default gateways and the "no ip routing"
command configured

• 2 Ethernet cables—since we've shutdown the
switchport leading to R1, we don't really need
that cable

• A way to issue commands over the console
ports

C O N F I G U R A T I O N S T E P S

If you haven't already (Lab 19a), wire the topology and give your switch, S1, its boilerplate
configurations
• Hostnames per the diagram
• No  domain-lookup
• Synchronous logging and no exec-timeout on the console

If you haven't already, configure the L access aspects of the switch, S1
• Create s 10 and 20
• Define interfaces Fa0/1 and Fa0/2 as access ports, placing Fa0/1 in  10 and Fa0/2 in 20

Configure the hosts with  addresses and default gateways and test connectivity between them.
Finally, the point of the whole exercise…

• Configure L  interfaces for  10 and  20
• Enable L switching (routing) on S1

Verify connectivity between H1 and H2.

 (-)      ©-   L19b1 - 1

H2

H1
VLAN 10

Address: 10.10.0.2 /24
Gateway: 10.10.0.1

VLAN 20
Address: 10.20.0.2 /24
Gateway: 10.20.0.1

Fa 0/24

Fa 0/2

Gi 0/0

X
Fa 0/1

C O N F I G U R A T I O N W A L K T H R O U G H

Configure S1 as in Lab 19a—Skip if already done

Give the switch its basic "convenience" configurations.
S1

hostname S1
no ip domain-lookup
line con 0
 exec-timeout 0 0
 logging synchronous

On the switch, create s 10 and 20, and assign them to switchports Fa0/1 and Fa0/2,
respectively. Ensure that those switchports are in access mode, not trunking.
S1

1

2

3

4

5

6

7

8

S1(config)# interf fa0/1
S1(config-if)# switchport mode access
S1(config-if)# switchport access vlan 10
% Access VLAN does not exist. Creating vlan 10
S1(config-if)# interf fa0/2
S1(config-if)# switchport mode access
S1(config-if)# switchport access vlan 20
% Access VLAN does not exist. Creating vlan 20

Since we don't care about naming the s, we can simply allow the switch to automatically create
them when we enable them on switchports [Lines 3 and 7].

Now we shutdown the interface leading to the router (in Lab 19a, this was our trunk)
S1

1

2

S1(config)# interf fa0/24
S1(config-if)# shutdown

Before leaving the switch, make sure that your access interfaces are in the right s and not
shutdown and that the link to the router is shutdown.
S1

1

2

3

4

5

6

7

S1# show interfaces status

Port Name Status Vlan Duplex Speed Type
Fa0/1 connected 10 a-full a-100 10/100BaseTX
Fa0/2 notconnect 20 auto auto 10/100BaseTX
…
Fa0/24 Trunk to R1 disabled 1 auto auto 10/100BaseTX

If one of the hosts has a status of "notconnect" [Line 5], that means that it's off or disconnected at
the other end of the wire. In this case, I shut down the port of the router that I'm using as a host.
A status of "disabled" [Line 7] means that the switch's own interface is administratively shut
down. In the case of Fa 0/24, that's what we wanted.

Configure the Hosts—Skip if already done.

This will depend on your host operating system. If you happen to be (mis)using ancient Cisco
routers as I am, that configuration looks like this:

L19b1 - 2 ©-         (-)

H1 H2

1

2

3

4

5

H1(config)# no ip routing
H1(config)# ip default-gateway 10.10.0.1
H1(config)# interface fa0/0
H1(config-if)# ip address 10.10.0.2 255.255.255.0
H1(config-if)# no shutdown

no ip routing
ip default-gateway 10.20.0.1
interface FastEthernet0/0
 ip address 10.20.0.2 255.255.255.0

And verification looks like this:
H1

1

2

3

4

5

6

7

8

9

10

11

H1# show ip interf br
Interface IP-Address OK? Method Status
Protocol
FastEthernet0/0 10.10.0.2 YES manual up up
FastEthernet0/1 unassigned YES unset administratively down down

H1# show ip route
Default gateway is 10.10.0.1

Host Gateway Last Use Total Uses Interface
ICMP redirect cache is empty

A ping from H1 to H2 should fail because they're in separate s and subnets, with no routing in
between.

Now, you're ready to begin the heart of this lab, creating L SVIs (Switched Virtual Interfaces) and
using them to forward packets at wire-speed between s 10 and 20 without the packets ever
leaving the switch. Essentially, we're giving the switch two things the router had:
• IP addresses on interfaces that the hosts can use as default gateways—in this case the

interfaces will be "virtual." we'll put  addresses on "" interfaces whose numbers
correspond to the s our hosts are using. You've already seen this concept when you
placed an  address on  1 so you could telnet into a switch.

• The ability to route between subnets—we'll explicitly type the command "ip routing," which
was already on by default on the router. Remember, I had to explicitly turn if off on H1 and
H2 to make them act like hosts instead of routers

First, we'll create and verify the s
S1

1

2

3

4

5

6

7

8

9

10

11

S1(config)# interface vlan 10
S1(config-if)# ip address 10.10.0.1 255.255.255.0
S1(config-if)# interf vlan 20
S1(config-if)# ip address 10.20.0.1 255.255.255.0
S1(config-if)# do show ip interface brief
Interface IP-Address OK? Method Status Protocol
Vlan1 unassigned YES NVRAM administratively down down
Vlan10 10.10.0.1 YES manual up up
Vlan20 10.20.0.1 YES manual up up
FastEthernet0/1 unassigned YES unset up up
FastEthernet0/2 unassigned YES unset up up

This shows an interesting distinction. Our s [Lines 8 and 9] are L virtual interfaces, while our
Ethernet interfaces [Lines 10 and 11] are L switchports.

 (-)      ©-   L19b1 - 3

Now we can enable L routing. But first I'll prove that our switch isn't a router (yet), just so we know
what that looks like in case we ever forget to enable routing on an L switch.
S1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

S1(config)# do show ip route
Default gateway is not set

Host Gateway Last Use Total Uses Interface
ICMP redirect cache is empty

We're still just a Layer 2 switch
S1(config)# ip routing

Now we're a router
S1(config)# do show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2
 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
 ia - IS-IS inter area, * - candidate default, U - per-user static route
 o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

 10.0.0.0/24 is subnetted, 2 subnets
C 10.10.0.0 is directly connected, Vlan10
C 10.20.0.0 is directly connected, Vlan20

Notice that our exit interfaces [Lines 21 and 22] are the s. We would also need routes to the rest
of the world, but I'll leave that for the next lab.

V E R I F I C A T I O N W A L K T H R O U G H

Finally, a quick ping shows that I've been making all of this much more complex than the five lines
of configuration it really is.
R1

1

2

3

4

5

6

H1> ping 10.20.0.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.20.0.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/201/1000 ms

To recap, all we did was
• Create two virtual interfaces
• Turn on  routing

To be clear, a few specifics had to be observed
• Our  interface names (numbers), "vlan 10" and "vlan 20", had to match the s

assigned to the interfaces our hosts were attached to. This is because the way that s
subdivide a switch into multiple virtual switches really does work. The ladder has to be in the
correct hole for the packet to climb out.

• The  address subnets assigned to the s needed to match the host configurations in the
corresponding , but you knew that.

L19b1 - 4 ©-         (-)

	GOAL
	Topology

	CONFIGURATION STEPS
	CONFIGURATION WALKTHROUGH
	Configure S1 as in Lab 19a—Skip if already done
	Configure the Hosts—Skip if already done.

	VERIFICATION WALKTHROUGH

