
Rev. 20181113.131416 Lab 19a. Router On A Stick
ccnacookbook .com

G O A L

Configure routing on R1, enabling host H1 to communicate with host H2, then make  10
native on the trunk.

Topology—You'll need

• A router (R1) of almost any vintage. A 2621xm
is cheap. I'm using a 2821. Interface names may
vary between FastEthernet and GigabitEthernet,
depending on your hardware choice

• A switch (S1) of almost any vintage. A 2960 is a
fairly normal layer-2 switch. I'm using a 3550
layer-3 switch because it's dirt-cheap and can
handle the next two labs without rewiring. The
3550 also requires me to explicitly choose 802.1
for trunking encapsulation—a good habit

• Two hosts (H1 & H2) to test connectivity. I'm
actually using a couple of old Cisco routers
because they're conveniently in the same rack for
wiring and I can remotely configure them with
the same terminal server as everything else

• 3 Ethernet cables—the trunk is a normal cable
• A way to issue commands over the console ports

C O N F I G U R A T I O N S T E P S

Wire the topology and give your devices, R1 and S1, their boilerplate configurations
• Hostnames per the diagram
• Tell the  that when it doesn't recognize a command (for example a typo), it shouldn't

attempt to contact a  server to prepare to telnet to that hostname
• Tell the console port not to log you out after a period of inactivity
• Tell the  that if it sends syslog messages to the console port while you're typing there, it

should reprint the prompt and whatever you had already typed so that you know where you
were

Configure the switch, S1
• Create s 10 and 20
• Define interfaces Fa0/1 and Fa0/2 as access ports, placing Fa0/1 in  10 and Fa0/2 in 20
• Create a trunk on interface Fa0/24

Configure the router, R1
• Configure the trunk interface with 802.1 encapsulation
• Configure subinterfaces for each of the s expected on the trunk

 (-)       ©-   L19a - 1

H2

H1

Gi 0/0.10
 10.10.0.1 /24
Gi 0/0.20
 10.20.0.1 /24

VLAN 10

Address: 10.10.0.2 /24
Gateway: 10.10.0.1

VLAN 20
Address: 10.20.0.2 /24
Gateway: 10.20.0.1

Fa 0/24

Fa 0/2

Fa 0/1

Gi 0/0

Configure the hosts with  addresses and default gateways and test connectivity between them.
Make  10 the native 

• Modify the configuration of S1 to make  10 the native  across the trunk to R1
• Modify R1's configuration to cope with the L encapsulation change you just made on S1
• Re-test connectivity

V E R I F I C A T I O N

What routes did you need to add to R1's routing table and why?

What information does 802.1 encapsulation add to traffic over the trunk?

How does the encapsulation of a native  differ?

Why might you use a native ?

C O N F I G U R A T I O N W A L K T H R O U G H

Zero Out Your Devices

Make sure that the configurations of both devices really are wiped, including any existing s on
the switch. If they boot up asking to run the initial configuration dialog, you know that the
startup-config file had been erased from . However, there might still be s lurking in
the file "vlan.dat" in flash memory. The command "show vlan [brief]" will tell you for sure.

In a more complex topology (one with other switches), shut down the switch ports before deleting
vlan.dat to prevent the switch from instantly relearning the s from a neighbor via .
Since there's no startup-config, the ports will automatically not be shutdown after the reload.
Switch(config)# interface range fa0/1 -24 ,gi0/1 -2
Switch(config-if-range)# shutdown
Switch(config-if-range)# end
Switch# erase startup-config
Switch# delete vlan.dat

I keep the commands "Erase" and "Delete" straight by remembering that there's a "D" in both
"vlan.Dat" and "Delete"

Switch# reload

L19a - 2 ©-          (-)

Boilerplate

Give both devices their basic "convenience" configurations.
R1 S1

Router(config)# ho R1
R1(config)# no ip domain-lookup
R1(config)# line con 0
R1(config-line)# exec-time 0 0
R1(config-line)# logg sync

hostname S1
no ip domain-lookup
line con 0
 exec-timeout 0 0
 logging synchronous

Switch Configuration

On the switch, create s 10 and 20, and assign them to switchports Fa0/1 and Fa0/2,
respectively. Ensure that those switchports are in access mode, not trunking.
S1

1

2

3

4

5

6

7

8

S1(config)# interf fa0/1
S1(config-if)# switchport mode access
S1(config-if)# switchport access vlan 10
% Access VLAN does not exist. Creating vlan 10
S1(config-if)# interf fa0/2
S1(config-if)# switchport mode access
S1(config-if)# switchport access vlan 20
% Access VLAN does not exist. Creating vlan 20

Since we don't care about naming the s, we can simply allow the switch to automatically create
them when we enable them on switchports [Lines 3 and 7].

Now we can make the trunk to the router
S1

1

2

3

4

5

6

S1(config)# interf fa0/24
S1(config-if)# description Trunk to R1
S1(config-if)# switchport trunk encapsulation dot1q

This is only required on some switches, but is harmless on others.
It's not part of the CCNA, but it's a good habit I try to keep.

S1(config-if)# switchport mode trunk

Switch Verification

Before leaving the switch, make sure that your interfaces are in the right s and not shutdown.
S1

1

2

3

4

5

6

7

8

9

S1# show interfaces status

Port Name Status Vlan Duplex Speed Type
Fa0/1 connected 10 a-full a-100 10/100BaseTX
Fa0/2 connected 20 a-full a-100 10/100BaseTX
…
Fa0/24 Trunk to R1 notconnect 1 auto auto 10/100BaseTX

Don't worry about this "notconect" status. The router port on the other end of the wire is
still shut down. If it said "disabled," then we'd need to do a "no shutdown" here.

The notation [Line 7] about fa0/24 being in  1 looks odd, but since we know it's a trunk, we
can get better answers with the command "show interfaces fa0/24 trunk."

 (-)       ©-   L19a - 3

S1

1

2

3

4

5

6

7

8

9

10

11

12

13

S1# show interfaces fa0/24 trunk

Port Mode Encapsulation Status Native vlan
Fa0/24 on 802.1q trunking 1

Port Vlans allowed on trunk
Fa0/24 1-4094

Port Vlans allowed and active in management domain
Fa0/24 1,10,20

Port Vlans in spanning tree forwarding state and not pruned
Fa0/24 1,10,20

We can also check our access/trunk modes and  assignments for each interface in detail.
S1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

S1# show interfaces fa0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 10 (VLAN0010)
Trunking Native Mode VLAN: 1 (default)
…
S1# show interfaces fa0/2 switchport
Name: Fa0/2
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 20 (VLAN0020)
…
S1# show interfaces fa0/24 switchport
Name: Fa0/24
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)

This command is filled with half answers that you have to put together yourself. For example:
• Interface fa0/1 is "administratively" configured to be an access port [Line 4] and it actually is

one, "operationally" [Line 5]
• It's assigned to be in  10 when it's an access port [Line 9] and it is one [Line 5]
• Its native  will be 1 when it's a trunk [Line 10], but it's not a trunk [Line 5]
• Interface Fa0/24 is configured to be a trunk [Line 25] and it is one [Line 26]

L19a - 4 ©-          (-)

Router Configuration

We'll use subinterfaces to separate frames by , according to their 802.1 tags. That way, we can
route the enclosed packets between the  subnets of those subinterfaces.
R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

R1(config)# interf gi0/0
R1(config-if)# description Trunk to S1
R1(config-if)# no ip address

Pointless on a router with no pre-existing configuration, but harmless. A good habit to
avoid obscure potential problems with weird symptoms that only show up rarely, if ever.

R1(config-if)# interf gi0/0.10
R1(config-subif)# encapsulation dot1q 10
R1(config-subif)# ip address 10.10.0.1 255.255.255.0
R1(config-subif)# no shutdown

A "no shut" on a subinterface is only useful if there's a pre-existing config and it won't
bring up the underlying interface; I'll still have to do a "no shut" on Gi0/0, see line 17

R1(config-subif)# interf gi0/0.20
R1(config-subif)# encapsulation dot1q 20
R1(config-subif)# ip address 10.20.0.1 255.255.255.0
R1(config-subif)# no shutdown
R1(config-subif)# interf gi0/0
R1(config-if)# no shutdown

This was saved for last as a personal preference. I like to finish configuring things before
bringing them online.

The interesting thing about trunk subinterface configurations is that the encapsulation statements
are on the subinterfaces, rather than declaring the whole interface to use that encapsulation. It
helps to remember that the repeated commands also set which vlan is on each subinterface.

By the way, I happened to make the subinterface numbers match each  number only for the
sake of readability and predictability. They are completely unrelated.

Router Verification

Before leaving the router, check that your (sub)interfaces are all up and in the correct s.
R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

R1# show ip interf br
Interface IP-Address OK? Method Status
Protocol
GigabitEthernet0/0 unassigned YES unset up up
GigabitEthernet0/0.10 10.10.0.1 YES manual up up
GigabitEthernet0/0.20 10.20.0.1 YES manual up up
…
R1# show interfaces gi0/0.10
GigabitEthernet0/0.10 is up, line protocol is up
 Hardware is MV96340 Ethernet, address is 001e.1321.e3a8 (bia 001e.1321.e3a8)
 Internet address is 10.10.0.1/24
 MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation 802.1Q Virtual LAN, Vlan ID 10.
 ARP type: ARPA, ARP Timeout 04:00:00
 Keepalive set (10 sec)
 Last clearing of "show interface" counters never

We use the "show interfaces" command instead of "show ip interface" to see 802.1 encapsulation
and  choices because those are  L concepts, not L. I used the "show ip interface brief"
command to check everything else simply because it's so much easier to quickly read.

 (-)       ©-   L19a - 5

Configure the Hosts

This will depend on your host operating system. If you happen to be (mis)using ancient Cisco
routers as I am, that configuration looks like this:
H1 H2

1

2

3

4

5

H1(config)# no ip routing
H1(config)# ip default-gateway 10.10.0.1
H1(config)# interface fa0/0
H1(config-if)# ip address 10.10.0.2 255.255.255.0
H1(config-if)# no shutdown

no ip routing
ip default-gateway 10.20.0.1
interface FastEthernet0/0
 ip address 10.20.0.2 255.255.255.0

And verification looks like this:
H1

1

2

3

4

5

6

7

8

9

10

11

H1# show ip interf br
Interface IP-Address OK? Method Status
Protocol
FastEthernet0/0 10.10.0.2 YES manual up up
FastEthernet0/1 unassigned YES unset administratively down down

H1# show ip route
Default gateway is 10.10.0.1

Host Gateway Last Use Total Uses Interface
ICMP redirect cache is empty

V E R I F I C A T I O N W A L K T H R O U G H

First, let's see what routes are in R1's routing table
R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

R1# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2
 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
 ia - IS-IS inter area, * - candidate default, U - per-user static route
 o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
 + - replicated route, % - next hop override

Gateway of last resort is not set

 10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
C 10.10.0.0/24 is directly connected, GigabitEthernet0/0.10
L 10.10.0.1/32 is directly connected, GigabitEthernet0/0.10
C 10.20.0.0/24 is directly connected, GigabitEthernet0/0.20
L 10.20.0.1/32 is directly connected, GigabitEthernet0/0.20

All the routes we need are directly connected (C) subinterfaces, so we won't need to add any static
routes or run a routing protocol. Our switch is invisible to  L , so it doesn't change the
"directly connected" status of those subnets and their hosts.

L19a - 6 ©-          (-)

To really mess with your mind, consider this:
• At  L, our switch is one hunk of steel and silicon
• At L, it's two switches, one for each of our s (and a third for the  1, which Cisco's

 started up as its default)
• At L, it's a transparent wire

OK, enough. Time for some pinging.
H1

H1# ping 10.10.0.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.10.0.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/201/1000 ms
H1# ping 10.20.0.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.20.0.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
H1# ping 10.20.0.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.20.0.2, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 1/1/4 ms

By now, you know to expect a router to drop the first packet while it waits for ARP
Congratulations, you're done unless you want to mess with native s.

N A T I V E V L A N O N T R U N K

Native s travel across a trunk untagged—they don't have their L Ethernet header expanded to
hold a  . In order to maintain conceptual consistency and ensure that every frame is in
some , a "none of the above" configuration is placed on the device at each end of the trunk.
This is called a "native ," and any frame that arrives untagged is placed in that . Also,
frames in that  aren't tagged as they're sent out to cross the trunk.

The goal isn't to avoid tagging some frames during their trip across the trunk, but rather to cope
with untagged frames going to and from somewhere else. To understand that, you have to
remember that Ethernet is a broadcast medium and the trunk connection between your switch
and router might be more than just an Ethernet cable. That Ethernet segment might include a
hub with printers, computers, and webcams. Those other devices aren't going to tag their frames
and could choke on any tagged frames that are addressed to them.

Note: leaving native  frames untagged is great for theory and Cisco exams, but don't do it in
real life; there are security issues.

 (-)       ©-   L19a - 7

You Already Have a Native VLAN

One thing that I've ignored in the preceding diagnostic "show" commands is that we actually already
have a native  on our trunks. By default, Cisco uses  1 as the native  on its trunks
and  has been sending untagged  1 frames across our trunk ever since we brought it
online. Here's a reminder from the switch.
S1

1

2

3

4

5

6

7

8

9

10

11

12

13

S1# show interfaces fa0/24 trunk

Port Mode Encapsulation Status Native vlan
Fa0/24 on 802.1q trunking 1

Port Vlans allowed on trunk
Fa0/24 1-4094

Port Vlans allowed and active in management domain
Fa0/24 1,10,20

Port Vlans in spanning tree forwarding state and not pruned
Fa0/24 1,10,20

As for the other end, the router has been receiving and sending  1 frames using the underlying
interface, Gi0/0, while s 10 and 20 have been using the subinterfaces that we created
specifically for them.
R1

R1# show interfaces Gi 0/0
GigabitEthernet0/0 is up, line protocol is up
 Hardware is MV96340 Ethernet, address is 001e.1321.e3a8 (bia 001e.1321.e3a8)
 Description: Trunk to S1
 MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation 802.1Q Virtual LAN, Vlan ID 1., loopback not set
…
R1# show interfaces Gi 0/0.10
GigabitEthernet0/0.10 is up, line protocol is up
 Hardware is MV96340 Ethernet, address is 001e.1321.e3a8 (bia 001e.1321.e3a8)
 Internet address is 10.10.0.1/24
 MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation 802.1Q Virtual LAN, Vlan ID 10.
…

To prove that  1 is "native" on the router end, we can use the command "show vlans." This
command produces voluminous output organized by  rather than by interface.
R1

R1# show vlans 1
Leave off the "1" to show all VLANs

Virtual LAN ID: 1 (IEEE 802.1Q Encapsulation)

 vLAN Trunk Interface: GigabitEthernet0/0

 This is configured as native Vlan for the following interface(s) :
GigabitEthernet0/0

Traffic counts omitted

L19a - 8 ©-          (-)

Handling the native  on the underlying interface is normal Cisco behavior and having  1
be native is the Cisco default. There's no  address on the underlying interface, so  1 traffic
can't be routed, but for things like , which operate solely at L, that's .

You may still run across older references that handle the native  at L by simply putting an 
address on the underlying router interface, Gi 0/0, but modern best practice is to be more
explicit by giving the native  its own subinterface and using the "native" keyword. We'll
declare  10 to be native on the switch:
S1(config)# interface fa0/24
S1(config-if)# switchport trunk native vlan 10

And on the router:
R1(config)# interf Gi0/0.10
R1(config-subif)# encapsulation dot1q 10 native

For context, here's a recap of our configs with the additions highlighted
R1 S1

1

2

3

4

5

6

7

8

9

10

11

interface GigabitEthernet0/0
 description Trunk to S1
 no ip address
!
interface GigabitEthernet0/0.10
 encapsulation dot1Q 10 native
 ip address 10.10.0.1 255.255.255.0
!
interface GigabitEthernet0/0.20
 encapsulation dot1Q 20
 ip address 10.20.0.1 255.255.255.0

interface FastEthernet0/24
 description Trunk to R1
 switchport trunk encapsulation dot1q
 switchport trunk native vlan 10
 switchport mode trunk

We can check that our pings still work
R1

H1# ping 10.20.0.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.20.0.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/12/20 ms

We can check the configuration results on the switch
S1

S1# show interfaces trunk

Port Mode Encapsulation Status Native vlan
Fa0/24 on 802.1q trunking 10

Port Vlans allowed on trunk
Fa0/24 1-4094

Port Vlans allowed and active in management domain
Fa0/24 1,10,20

Port Vlans in spanning tree forwarding state and not pruned
Fa0/24 1,10,20

 (-)       ©-   L19a - 9

And we can recheck the router.
R1

R1# show vlans

Virtual LAN ID: 1 (IEEE 802.1Q Encapsulation)

 vLAN Trunk Interface: GigabitEthernet0/0

 Protocols Configured: Address: Received: Transmitted:
 Other 0 439

 131 packets, 26508 bytes input
 439 packets, 33484 bytes output

Virtual LAN ID: 10 (IEEE 802.1Q Encapsulation)

 vLAN Trunk Interface: GigabitEthernet0/0.10

 This is configured as native Vlan for the following interface(s) :
GigabitEthernet0/0

 Protocols Configured: Address: Received: Transmitted:
 IP 10.10.0.1 602244 603639
 Other 0 4

 602294 packets, 841736496 bytes input
 603643 packets, 843760181 bytes output

Virtual LAN ID: 20 (IEEE 802.1Q Encapsulation)

 vLAN Trunk Interface: GigabitEthernet0/0.20

 Protocols Configured: Address: Received: Transmitted:
 IP 10.20.0.1 603820 602067
 Other 0 4

 603820 packets, 845530567 bytes input
 602071 packets, 843005881 bytes output

We still have  1 on the underlying interface (Gi0/0), but it's no longer the trunk's native .
Mismatched Native VLANs

Since the native  needs to be separately configured on both the router and the switch, it's
possible to get one end wrong. That could place frames in the wrong  as they cross the
trunk. It could also drop the packets they contain into a subinterface that's in the wrong subnet,
breaking your ability to route properly.

L19a - 10 ©-          (-)

	GOAL
	Topology—You'll need

	CONFIGURATION STEPS
	VERIFICATION
	CONFIGURATION WALKTHROUGH
	Zero Out Your Devices
	Boilerplate
	Switch Configuration
	Switch Verification
	Router Configuration
	Router Verification
	Configure the Hosts

	VERIFICATION WALKTHROUGH
	NATIVE VLAN ON TRUNK
	You Already Have a Native VLAN
	Mismatched Native VLANs

