
Rev. 20181113.131409 Lab 8a. OSPF
ccnacookbook .com

G O A L

Set up  in a single area so that all subnets are visible from all routers.

Topology—You'll need
• 2 routers of almost any vintage (A 2621xm is cheap. I'm using a 2821 and a 2851. Interface

names may vary between FastEthernet and GigabitEthernet, depending on hardware choice)
• 1 Ethernet crossover cable to connect the two routers
• Some way to issue commands over the router console ports

C O N F I G U R A T I O N S T E P S

Wire the topology and give your routers their basic configurations
• Hostname per the diagram
• Tell the router that when it doesn't recognize a command (for example a typo), it shouldn't

attempt to contact a  server to prepare to telnet to that hostname
• Tell the console port not to log you out after a period of inactivity
• Tell the router that if it sends syslog messages to the console port while you're typing there,

it should reprint the prompt and whatever you had already typed so that you know where
you were

Configure interface IP addresses per the diagram.
Start an  process on each router and add all subnets on all routers to the same  area.

V E R I F I C A T I O N

What routes has OSPF added to R1's routing table?

From R1, can you ping 10.2.0.1?
What's the  router  of R1? Why?

What's the  router  of R2? Why?

 (-)    ©-   L8a - 1

Gi 0/0 Gi 0/0 Lo 0

10.2.0.1 /2410.12.0.0 /30.1 .2

Which  process number did you use on R1? On R2? Can they differ? Be the same?

Which  area did you put the interfaces in? Why?

C O N F I G U R A T I O N W A L K T H R O U G H

Give the routers their basic configurations, then their interface  addresses.
R1 R2

Router(config)# hostname R1
R1(config)# no ip domain lookup
R1(config)# line console 0
R1(config-line)# exec-timeout 0 0

or "no exec-timeout"
R1(config-line)# logging synchronous

hostname R6
no ip domain lookup
line con 0
 exec-timeout 0 0
 logging synchronous

R1(config)# interface gi0/0
R1(config-if)# ip address 10.12.0.1
255.255.255.252
R1(config-if)# no shut

interface Loopback0
 ip address 10.2.0.1 255.255.255.0
!
interface GigabitEthernet0/0
 ip address 10.12.0.2 255.255.255.252

Start an  process on each router and add all subnets on all routers to the same  area.
R1

1

2

R1(config)# router ospf 10
R1(config-router)# network 10.12.0.0 0.0.0.3 area 0

It's fun when two lines of code do as much and can teach as much as these two. First, line 1
• This line starts the  process running on R1
• 10 is the  process number on R1. It can be any number between 1 and 65,535. It only

has meaning on this one router, so it doesn't need to match on R1.
Next, Line 2

• This line adds any interface with a matching network to the  process
• 0.0.0.3 is the wildcard for the network 10.12.0.0. and corresponds to the netmask

255.255.255.252
• In general, a wildcard mask can be obtained from a netmask by subtracting the netmask

from 255.255.255.255
• In this case, interface Gigabit 0/0 matches and is added to the  process, meaning that

 will discover neighbors out that interface and will advertise that interface's network via


• Notice that we're involving interfaces in the  process from the "config-router" prompt
based on a match of their  addresses, not fromthe config of the interfaces themselves. That
will change when we use OSPFv3 on IPv6

L8a - 2 ©-       (-)

Now some parallel config on R2
R2

1

2

3

4

5

R2(config)# router ospf 20
R2(config-router)# network 10.0.0.0 0.255.255.255 area 0

*Dec 27 23:42:51.867: %OSPF-5-ADJCHG: Process 20, Nbr 10.12.0.1 on
GigabitEthernet0/0 from LOADING to FULL, Loading Done

Here, we used the power of the wildcard to add all interfaces with an  address beginning with "10."
to the  process. Literally, a wildcard bit of 0 means that the corresponding address bit must
match, while a 1 means "we don't care." So, with an address of 10.0.0.0 and wildcard
0.255.255.255, the first 8 bits must match our given "10" and the last 24 bits don't matter. That
drags in both interface Gi0/0, with an address of 10.12.0.2, and our loopback interface, with its
address of 10.2.0.1.

Lines 4 and 5 show the syslog message as the  neighbor relationship across Gi0/0 to R1
becomes fully adjacent (converged). Process 20 is our own  process number. 10.12.0.1 is the
router  of R1, located out our interface GigabitEthernet0/0.

V E R I F I C A T I O N W A L K T H R O U G H

First, let's see what routes are in R1's routing table
R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

R1# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2
 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
 ia - IS-IS inter area, * - candidate default, U - per-user static route
 o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
 + - replicated route, % - next hop override

Gateway of last resort is not set

 10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
O 10.2.0.1/32 [110/2] via 10.12.0.2, 00:25:04, GigabitEthernet0/0
C 10.12.0.0/30 is directly connected, GigabitEthernet0/0
L 10.12.0.1/32 is directly connected, GigabitEthernet0/0
• Lines 2 through 9 are the legend that we can use to tell how individual routes became part of

the routing table. Enjoy it; I'll probably omit it in future examples
• Line 16 shows the  address the we locally ("L" in the left column) added to interface Gi0/0
• Line 15 shows the directly connected route ("C") that was derived from the  address and

netmask on that interface
• R2 also advertised that route to us via , but the Administrative Distance (AD) of  is

110, while the  of a directly connected route is 0, so the routing table uses the directly
connected route (lower  wins). The  difference reflects the reality that a route based on
our own interface's  address is considerably more likely to be correct than a route that some
other router told us about

• Within the lowest , the routing table will contain the route with the lowest cost.

 (-)    ©-   L8a - 3

• Line 14 shows the route to R2's loopback interface, which we learned about through 
• Line 13 is a throwback to the days of classful subnetting which serves as a header, organizing

subnets of the same classful network together.
Looking specifically at our -supplied route,

R1

O 10.2.0.1/32 [110/2] via 10.12.0.2, 00:25:04, GigabitEthernet0/0

We can tell several things.
• We know that  supplied the route in two ways. First, there's a 'O' in the left colum.

Second, the administrative distance of the route is shown as the first number in the square
brackets. We know that  has an  of 110

• We know that the route has an  cost of 2 (the second number in the square brackets). If
 had learned more than one route to that subnet, the route(s) with the lowest cost
within  would have been offered to the routing table to be included or ignored based on
whether a source with a lower  had also offered a route to the same subnet

• We know that  last updated the route information 25 minutes and 4 seconds ago. The
periodic reflooding of routes by  (every 30 minutes) won't reset this clock. Repetition is
not an update

• As with any route, we can tell that the exit interface is Gi0/0 and the next hop address is
10.12.0.2

• Don't worry about the subnet having a /32 mask, matching only a single address. That's the
way loopback interfaces are treated. Being more realistic with a "real" subnet would have
required a third router.

If we forget what any of this means, we can pull up a more verbose entry with better labels.
R1

1

2

3

4

5

6

7

R1# show ip route 10.2.0.1
Routing entry for 10.2.0.1/32
 Known via "ospf 10", distance 110, metric 2, type intra area
 Last update from 10.12.0.2 on GigabitEthernet0/0, 00:26:34 ago
 Routing Descriptor Blocks:
 * 10.12.0.2, from 10.2.0.1, 00:26:34 ago, via GigabitEthernet0/0
 Route metric is 2, traffic share count is 1

Now, let's look at , itself.
R1

1

2

3

R1# show ip ospf
 Routing Process "ospf 10" with ID 10.12.0.1

39 additional lines of output omitted
R2

4

5

R2# show ip ospf
 Routing Process "ospf 20" with ID 10.2.0.1

Looking at just the first line of output from this command, we can learn the Router ID (RID) of
each router's  process and the  process number on each router. Notice that the process
numbers don't need to match from one router to the next. In fact, it's doubtful that you would
ever care what they are at the  level.

L8a - 4 ©-       (-)

R2 chose the  10.2.0.1 because
• You hadn't explicitly set the  to something else
• 10.2.0.1 was the highest  address of the router's loopback interfaces

R1 chose the  10.12.0.1 because
• You hadn't explicitly set the  to something else
• R1 doesn't have any loopback interfaces
• 10.12.0.1 was the highest  address of the router's normal (and "up") interfaces

Of course, you can explicitly set the  on either or both routers to make diagnostic command
output easier to read and influence Designated Router (DR) elections on Ethernet subnets. The
 is just a 32-bit number, formatted as if it were an  address. After you change the number,
you'll have to reset the  process to make the change take effect.
R1

R1(config)# router ospf 10
R1(config-router)# router-id 0.0.0.1
% OSPF: Reload or use "clear ip ospf process" command, for this to take effect
R1(config-router)# do clear ip ospf process
Reset ALL OSPF processes? [no]: y
R1(config-router)#
Jan 2 19:43:03.446: %OSPF-5-ADJCHG: Process 10, Nbr 10.2.0.1 on
GigabitEthernet0/0 from FULL to DOWN, Neighbor Down: Interface down or detached
Jan 2 19:43:03.450: %OSPF-5-ADJCHG: Process 10, Nbr 10.2.0.1 on
GigabitEthernet0/0 from LOADING to FULL, Loading Done

On to figuring out what  area the interfaces are in…
R1

R1# show ip ospf database

 OSPF Router with ID (0.0.0.1) (Process ID 10)

 Router Link States (Area 0)

Link ID ADV Router Age Seq# Checksum Link count
0.0.0.1 0.0.0.1 1478 0x80000002 0x00A15F 1
10.2.0.1 10.2.0.1 1100 0x80000012 0x00AE0B 2

 Net Link States (Area 0)

Link ID ADV Router Age Seq# Checksum
10.12.0.2 10.2.0.1 1623 0x80000002 0x0062A6

Clearly, everything is in area 0 (the backbone). This command also tells us our router  (now
updated to 0.0.0.1) and the  process number.

 (-)    ©-   L8a - 5

	GOAL
	CONFIGURATION STEPS
	VERIFICATION
	CONFIGURATION WALKTHROUGH
	VERIFICATION WALKTHROUGH

