
Rev. 20181113.124933 15b. GRE
ccnacookbook .com

GRE (Generic Routing
Encapsulation) tunnels have
no crypto, but illustrate
tunnel interfaces. IPsec can
be added for encryption, but
not in .

In the image to the left, packets will seem to
travel through the tunnel at the top, and their
source & destination addresses will reflect that
(10.0.0.1 and 10.0.0.2). In reality though, the

 packets will be encapsulated as data inside  packets with the real source and destination
addresses (198.51.100.7 and 203.0.113.58) in "delivery headers." Those packets will really be routed
through the internet (cloud at bottom). When they arrive and are de-encapsulated, there will no
longer be any evidence that the packet didn't physically travel over the imaginary tunnel.
Once encapsulated, a  packet looks like this:

Delivery IP header GRE Header Original packet with headers

Tunnel Interfaces—Virtual interfaces that form tunnel endpoints. You can tell the router to use the
tunnel by naming it in static routes or network statements for routing protocols, just like you
would with a "real" interface.
• Tunnels interfaces are within the internal or secure part of the network
• Routing tables can use them as exit interfaces
• The encapsulating tunnel header is analogous to  header on serial point-to-point
• Each end of a tunnel has an  address in the same subnet
• Routing protocols can form neighbor relationships across tunnels.

C O N F I G U R A T I O N

Think of what you're creating as a literal "tunnel" or shortcut, where packets enter the tunnel at some
location in your network and reappear in some other router that you control, even in a branch
office a continent away.
• Name the virtual tunnel interface [Line 1]—I try to avoid using the numbers 0 and 1

because  doesn't put a space in front of the number, making the former look like the
number 10 and the latter look like a misspelled and unnumbered "tunnell."

• Give your new tunnel interface an  address [Line 2]—This will activate  handling on the
interface, so it's necessary even if your static routes refer to the link as an exit interface by
name, e.g. "tunnel 2," instead of by next-hop address. This address will also allow you to
involve the tunnel in routing protocols, using network statements.

• Choose the tunnel source [Line 3]—In terms of routing, this is where your "real" packets
will disappear into the tunnel. They'll be encapsulated in a delivery header and this  address
will be used as the source address of that delivery header. You can either specify an exit
interface as the source [see R2, right column] or the address of that interface [R1].

 (-)  ©-   15(B) - 1

10.0.0.2 /30
Gi 0/0 Gi 0/1

203.0.113.58198.51.100.7

10.0.0.1 /30

Internet

• Specify the other end of the tunnel [Line 4]—this can be anywhere in the internet, and the
address will match the source address used by the other end. This address will be also be used
as the destination address in the delivery header to route the packet through the "real"
internet, before revealing it, once de-encapsulated, at the other end of the tunnel

• Specify the kind of tunnel [line 5]—GRE is the default, so this is optional and won't display
in a "show running-config"

R1 R2

1

2

3

4

5

Interface Tunnel 2
 ip address 10.0.0.1 255.255.255.252
 tunnel source 198.51.100.7
 tunnel destination 203.0.113.58
 tunnel mode gre ip

Interface Tunnel 3
 ip address 10.0.0.2 255.255.255.252
 tunnel source GigabitEthernet0/1
 tunnel destination 198.51.100.7

Could be a hostname (DNS)

V E R I F I C A T I O N

1

2

3

4

R1# show ip interface brief
Interface IP-Address OK? Method Status Protocol
GigabitEthernet0/0 198.51.100.7 YES manual up up
Tunnel2 10.0.0.1 YES manual up up

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

R1# show interfaces tunnel 2
Tunnel2 is up, line protocol is up
 Hardware is Tunnel
 Internet address is 10.0.0.1/30
 MTU 17916 bytes, BW 100 Kbit/sec, DLY 50000 usec,
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation TUNNEL, loopback not set
 Keepalive not set
 Tunnel source 198.51.100.7, destination 203.0.113.58
 Tunnel protocol/transport GRE/IP
 Key disabled, sequencing disabled
 Checksumming of packets disabled
 Tunnel TTL 255, Fast tunneling enabled
 Tunnel transport MTU 1476 bytes

Notice the Maximum Transmission Unit is smaller than the standard 1500 for Ethernet
so that it can accommodate the extra headers

1

2

3

4

5

6

7

8

9

R1# show ip route
Legend omitted

 10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C 10.0.0.0/30 is directly connected, Tunnel2
L 10.0.0.1/32 is directly connected, Tunnel2
 198.51.100.0/24 is variably subnetted, 2 subnets, 2 masks
C 198.51.100.0/24 is directly connected, GigabitEthernet0/0
L 198.51.100.7/32 is directly connected, GigabitEthernet0/0
S 203.0.113.0/24 [1/0] via 198.51.100.1, GigabitEthernet0/0

Traceroute only shows one hop—the inside of the tunnel. The path that the tunnel, itself, takes is
invisible. For that you'd do a traceroute on the tunnel destination  listed in "show interfaces."

1

2

3

4

5

R1# traceroute 10.0.0.2
Type escape sequence to abort.
Tracing the route to 10.0.0.2
VRF info: (vrf in name/id, vrf out name/id)
 1 10.0.0.2 4 msec * 0 msec

15(B) - 2 ©-     (-)

T R O U B L E S H O O T I N G

The configuration of a  tunnel is so simple (3 lines) that troubleshooting really boils down to
checking the configuration for correctness.

Tunnel IP Address Problem (up/up)

The first thing that you should realize is that a tunnel will show as up/up even if it doesn't have an 
address; you just won't be able to send  packets over it. That's because one of the side effects of
assigning an  address to an interface is to start an  packet handling process on that interface.
The "protocol" field refers to an  L protocol, not , which operates at L.

1

2

3

4

5

6

7

R1# show ip interface brief
Interface IP-Address OK? Method Status Protocol
GigabitEthernet0/0 198.51.100.7 YES NVRAM up up
GigabitEthernet0/1 unassigned YES NVRAM administratively down down
Serial0/2/0 unassigned YES NVRAM administratively down down
Serial0/2/1 unassigned YES NVRAM administratively down down
Tunnel2 unassigned YES manual up up

Your first hint that an up/up tunnel can't pass  might come when a routing protocol can't form a
neighbor relationship across the tunnel.

A simple ping will tell you if an up/up tunnel is really usable. In fact, that ping will test both
directions at once.

Tunnel Source (up/down on misconfigured end)

A tunnel source can be specified as either an interface or an  address. These are just two ways of
referring to the exact same thing: an up/up interface with an  address. If that underlying
interface isn't up/up or lacks an  address, your tunnel will be up/down on the router with the
underlying interface problem. The router at the correctly configured end will still be up/up.

Tunnel Destination (up/down on misconfigured end)

A tunnel destination is always an  address. Hostnames are just for making configuration easier. If
you enter a hostname, your router will immediately look up the  address using  and store
the address in the running config. Of course, if  resolution fails, you'll get an error during
configuration.

If the routing table has no route to the destination address, then the tunnel will be up/down. The
other end of the tunnel will show as up/up because destination checking is local to each router.

Access Lists

In an extended access list,  is its own protocol, just like , used by ping. A "permit ip"
statement will also allow  in the same way it allows  and .
R2(config)# access-list 105 permit gre any any

If you use an address instead of "any," it should match the source or destination statement used in
the tunnel's creation, not the IP address of the tunnel interface.

This makes it easy to overlook when creating an , leaving  packets at the mercy of the implicit
"deny any any" at the end of every  This is often more of an issue inbound, since outbound
s don't affect packets that were created within the same router. A  encapsulation would
count as a packet that originated locally, even if its contents didn't.

 (-)  ©-   15(B) - 3

D M V P N

DMVPN (Dynamic Multipoint VPN)—A Cisco feature that overcomes the point-to-point nature
of  and the hub-and-spoke architecture limitations that result. Any site can directly exchange
data with any other site in the same tunnel.

NHRP (Next Hop Resolution Protocol)—makes  work and eliminates significant static
configuration tasks.
• One site acts as the  server (the "hub")
• Initially, spokes can directly communicate only with the hub
• Spokes register their public and private  addresses with the server (hub). These correspond

to the  source address and the tunnel interface  address, respectively. Thanks to dynamic
registration, you don't have to add configuration to the hub every time you add a site

• For spokes to directly communicate to each other, they each
◦ learn about the other's private subnets through a routing protocol
◦ learn the other's public address from the  server (the "hub"). This corresponds to

the destination statement on a manual  tunnel

O U T O F S C O P E B O N U S

R1(config-if)# tunnel mode ipsec ipv4
Default = tunnel mode gre ip
Option for ipv6 tunneling available

15(B) - 4 ©-     (-)

	CONFIGURATION
	VERIFICATION
	TROUBLESHOOTING
	Tunnel IP Address Problem (up/up)
	Tunnel Source (up/down on misconfigured end)
	Tunnel Destination (up/down on misconfigured end)
	Access Lists

	DMVPN
	OUT OF SCOPE BONUS

